Source: math/PerlinNoise.js

/**
 *  @class PerlinNoise
 *  @memberof SQR
 *
 *  @description <p>A speed-improved perlin and simplex noise algorithms for 2D.</p>
 *
 *	<p>Based on example code by Stefan Gustavson (stegu@itn.liu.se).
 *	Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 *	Better rank ordering method by Stefan Gustavson in 2012.
 *	Converted to Javascript by Joseph Gentle.</p>
 *
 *	<p>Version 2012-03-09</p>
 *
 *	<p>This code was placed in the public domain by its original author,
 *	Stefan Gustavson. You may use it as you see fit, but attribution is appreciated.</p>
 *
 *	<p>This code below is copied from <a href='https://github.com/josephg/noisejs/blob/master/perlin.js'>perlin.js</a> and only slightly chnaged to  adapt for SQR API.</p>
 *	
 */
SQR.PerlinNoise = (function(){

	var module = {};

	function Grad(x, y, z) {
		this.x = x; this.y = y; this.z = z;
	}
	
	Grad.prototype.dot2 = function(x, y) {
		return this.x*x + this.y*y;
	};

	Grad.prototype.dot3 = function(x, y, z) {
		return this.x*x + this.y*y + this.z*z;
	};

	var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
							 new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
							 new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)];

	var p = [151,160,137,91,90,15,
	131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
	190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
	88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
	77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
	102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
	135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
	5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
	223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
	129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
	251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
	49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
	138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180];
	// To remove the need for index wrapping, double the permutation table length
	var perm = new Array(512);
	var gradP = new Array(512);

	// This isn't a very good seeding function, but it works ok. It supports 2^16
	// different seed values. Write something better if you need more seeds.
	module.seed = function(seed) {
		if(seed > 0 && seed < 1) {
			// Scale the seed out
			seed *= 65536;
		}

		seed = Math.floor(seed);
		if(seed < 256) {
			seed |= seed << 8;
		}

		for(var i = 0; i < 256; i++) {
			var v;
			if (i & 1) {
				v = p[i] ^ (seed & 255);
			} else {
				v = p[i] ^ ((seed>>8) & 255);
			}

			perm[i] = perm[i + 256] = v;
			gradP[i] = gradP[i + 256] = grad3[v % 12];
		}
	};

	module.seed(0);

	/*
	for(var i=0; i<256; i++) {
		perm[i] = perm[i + 256] = p[i];
		gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
	}*/

	// Skewing and unskewing factors for 2, 3, and 4 dimensions
	var F2 = 0.5*(Math.sqrt(3)-1);
	var G2 = (3-Math.sqrt(3))/6;

	var F3 = 1/3;
	var G3 = 1/6;

	/** 
	 *	@method perlin2
	 *	@memberof SQR.PerlinNoise
	 *
	 *	@param {Number} x
	 *	@param {Number} y
	 *
	 *	@returns {Number} the noise value in -1 to 1 range
	 */
	module.simplex2 = function(xin, yin) {
		var n0, n1, n2; // Noise contributions from the three corners
		// Skew the input space to determine which simplex cell we're in
		var s = (xin+yin)*F2; // Hairy factor for 2D
		var i = Math.floor(xin+s);
		var j = Math.floor(yin+s);
		var t = (i+j)*G2;
		var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
		var y0 = yin-j+t;
		// For the 2D case, the simplex shape is an equilateral triangle.
		// Determine which simplex we are in.
		var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
		if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
			i1=1; j1=0;
		} else {    // upper triangle, YX order: (0,0)->(0,1)->(1,1)
			i1=0; j1=1;
		}
		// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
		// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
		// c = (3-sqrt(3))/6
		var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
		var y1 = y0 - j1 + G2;
		var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
		var y2 = y0 - 1 + 2 * G2;
		// Work out the hashed gradient indices of the three simplex corners
		i &= 255;
		j &= 255;
		var gi0 = gradP[i+perm[j]];
		var gi1 = gradP[i+i1+perm[j+j1]];
		var gi2 = gradP[i+1+perm[j+1]];
		// Calculate the contribution from the three corners
		var t0 = 0.5 - x0*x0-y0*y0;
		if(t0<0) {
			n0 = 0;
		} else {
			t0 *= t0;
			n0 = t0 * t0 * gi0.dot2(x0, y0);  // (x,y) of grad3 used for 2D gradient
		}
		var t1 = 0.5 - x1*x1-y1*y1;
		if(t1<0) {
			n1 = 0;
		} else {
			t1 *= t1;
			n1 = t1 * t1 * gi1.dot2(x1, y1);
		}
		var t2 = 0.5 - x2*x2-y2*y2;
		if(t2<0) {
			n2 = 0;
		} else {
			t2 *= t2;
			n2 = t2 * t2 * gi2.dot2(x2, y2);
		}
		// Add contributions from each corner to get the final noise value.
		// The result is scaled to return values in the interval [-1,1].
		return 70 * (n0 + n1 + n2);
	};

	/** 
	 *	@method simplex3
	 *	@memberof SQR.PerlinNoise
	 *
	 *	@param {Number} x
	 *	@param {Number} y
	 *	@param {Number} z
	 *
	 *	@returns {Number} the noise value in -1 to 1 range
	 */
	module.simplex3 = function(xin, yin, zin) {
		var n0, n1, n2, n3; // Noise contributions from the four corners

		// Skew the input space to determine which simplex cell we're in
		var s = (xin+yin+zin)*F3; // Hairy factor for 2D
		var i = Math.floor(xin+s);
		var j = Math.floor(yin+s);
		var k = Math.floor(zin+s);

		var t = (i+j+k)*G3;
		var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed.
		var y0 = yin-j+t;
		var z0 = zin-k+t;

		// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
		// Determine which simplex we are in.
		var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
		var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
		if(x0 >= y0) {
			if(y0 >= z0)      { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; }
			else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; }
			else              { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; }
		} else {
			if(y0 < z0)      { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; }
			else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; }
			else             { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; }
		}
		// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
		// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
		// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
		// c = 1/6.
		var x1 = x0 - i1 + G3; // Offsets for second corner
		var y1 = y0 - j1 + G3;
		var z1 = z0 - k1 + G3;

		var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
		var y2 = y0 - j2 + 2 * G3;
		var z2 = z0 - k2 + 2 * G3;

		var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
		var y3 = y0 - 1 + 3 * G3;
		var z3 = z0 - 1 + 3 * G3;

		// Work out the hashed gradient indices of the four simplex corners
		i &= 255;
		j &= 255;
		k &= 255;
		var gi0 = gradP[i+   perm[j+   perm[k   ]]];
		var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]];
		var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]];
		var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]];

		// Calculate the contribution from the four corners
		var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
		if(t0<0) {
			n0 = 0;
		} else {
			t0 *= t0;
			n0 = t0 * t0 * gi0.dot3(x0, y0, z0);  // (x,y) of grad3 used for 2D gradient
		}
		var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
		if(t1<0) {
			n1 = 0;
		} else {
			t1 *= t1;
			n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
		}
		var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
		if(t2<0) {
			n2 = 0;
		} else {
			t2 *= t2;
			n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
		}
		var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
		if(t3<0) {
			n3 = 0;
		} else {
			t3 *= t3;
			n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
		}
		// Add contributions from each corner to get the final noise value.
		// The result is scaled to return values in the interval [-1,1].
		return 32 * (n0 + n1 + n2 + n3);

	};

	// ##### Perlin noise stuff

	function fade(t) {
		return t*t*t*(t*(t*6-15)+10);
	}

	function lerp(a, b, t) {
		return (1-t)*a + t*b;
	}

	/** 
	 *	@method perlin2
	 *	@memberof SQR.PerlinNoise
	 *
	 *	@param {Number} x
	 *	@param {Number} y
	 *
	 *	@returns {Number} the noise value in -1 to 1 range
	 */
	module.perlin2 = function(x, y) {
		// Find unit grid cell containing point
		var X = Math.floor(x), Y = Math.floor(y);
		// Get relative xy coordinates of point within that cell
		x = x - X; y = y - Y;
		// Wrap the integer cells at 255 (smaller integer period can be introduced here)
		X = X & 255; Y = Y & 255;

		// Calculate noise contributions from each of the four corners
		var n00 = gradP[X+perm[Y]].dot2(x, y);
		var n01 = gradP[X+perm[Y+1]].dot2(x, y-1);
		var n10 = gradP[X+1+perm[Y]].dot2(x-1, y);
		var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1);

		// Compute the fade curve value for x
		var u = fade(x);

		// Interpolate the four results
		return lerp(
				lerp(n00, n10, u),
				lerp(n01, n11, u),
			 fade(y));
	};

	/** 
	 *	@method perlin3
	 *	@memberof SQR.PerlinNoise
	 *
	 *	@param {Number} x
	 *	@param {Number} y
	 *	@param {Number} z
	 *
	 *	@returns {Number} the noise value in -1 to 1 range
	 */
	module.perlin3 = function(x, y, z) {
		// Find unit grid cell containing point
		var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z);
		// Get relative xyz coordinates of point within that cell
		x = x - X; y = y - Y; z = z - Z;
		// Wrap the integer cells at 255 (smaller integer period can be introduced here)
		X = X & 255; Y = Y & 255; Z = Z & 255;

		// Calculate noise contributions from each of the eight corners
		var n000 = gradP[X+  perm[Y+  perm[Z  ]]].dot3(x,   y,     z);
		var n001 = gradP[X+  perm[Y+  perm[Z+1]]].dot3(x,   y,   z-1);
		var n010 = gradP[X+  perm[Y+1+perm[Z  ]]].dot3(x,   y-1,   z);
		var n011 = gradP[X+  perm[Y+1+perm[Z+1]]].dot3(x,   y-1, z-1);
		var n100 = gradP[X+1+perm[Y+  perm[Z  ]]].dot3(x-1,   y,   z);
		var n101 = gradP[X+1+perm[Y+  perm[Z+1]]].dot3(x-1,   y, z-1);
		var n110 = gradP[X+1+perm[Y+1+perm[Z  ]]].dot3(x-1, y-1,   z);
		var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1);

		// Compute the fade curve value for x, y, z
		var u = fade(x);
		var v = fade(y);
		var w = fade(z);

		// Interpolate
		return lerp(
				lerp(
					lerp(n000, n100, u),
					lerp(n001, n101, u), w),
				lerp(
					lerp(n010, n110, u),
					lerp(n011, n111, u), w),
			 v);
	};

	return module;

})();